Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Añadir filtros

Tipo del documento
Intervalo de año
1.
medrxiv; 2021.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2021.07.25.21261105

RESUMEN

Federated learning is a technique for training predictive models without sharing patient-level data, thus maintaining data security while allowing inter-institutional collaboration. We used federated learning to predict acute kidney injury within three and seven days of admission, using demographics, comorbidities, vital signs, and laboratory values, in 4029 adults hospitalized with COVID-19 at five sociodemographically diverse New York City hospitals, between March-October 2020. Prediction performance of federated models was generally higher than single-hospital models and was comparable to pooled-data models. In the first use-case in kidney disease, federated learning improved prediction of a common complication of COVID-19, while preserving data privacy.


Asunto(s)
COVID-19 , Enfermedades Renales , Lesión Renal Aguda
2.
medrxiv; 2021.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2021.01.18.21249414

RESUMEN

Acute Kidney Injury (AKI) is among the most common complications of Coronavirus Disease 2019 (COVID-19). Throughout 2020 pandemic, the clinical approach to COVID-19 has progressively improved, but it is unknown how these changes have affected AKI incidence and severity. In this retrospective analysis, we report the trend over time of COVID-19 associated AKI and need of renal replacement therapy in a large health system in New York City, the first COVID-19 epicenter in United States.


Asunto(s)
COVID-19 , Lesión Renal Aguda
3.
arxiv; 2021.
Preprint en Inglés | PREPRINT-ARXIV | ID: ppzbmed-2101.04013v1

RESUMEN

Machine Learning (ML) models typically require large-scale, balanced training data to be robust, generalizable, and effective in the context of healthcare. This has been a major issue for developing ML models for the coronavirus-disease 2019 (COVID-19) pandemic where data is highly imbalanced, particularly within electronic health records (EHR) research. Conventional approaches in ML use cross-entropy loss (CEL) that often suffers from poor margin classification. For the first time, we show that contrastive loss (CL) improves the performance of CEL especially for imbalanced EHR data and the related COVID-19 analyses. This study has been approved by the Institutional Review Board at the Icahn School of Medicine at Mount Sinai. We use EHR data from five hospitals within the Mount Sinai Health System (MSHS) to predict mortality, intubation, and intensive care unit (ICU) transfer in hospitalized COVID-19 patients over 24 and 48 hour time windows. We train two sequential architectures (RNN and RETAIN) using two loss functions (CEL and CL). Models are tested on full sample data set which contain all available data and restricted data set to emulate higher class imbalance.CL models consistently outperform CEL models with the restricted data set on these tasks with differences ranging from 0.04 to 0.15 for AUPRC and 0.05 to 0.1 for AUROC. For the restricted sample, only the CL model maintains proper clustering and is able to identify important features, such as pulse oximetry. CL outperforms CEL in instances of severe class imbalance, on three EHR outcomes with respect to three performance metrics: predictive power, clustering, and feature importance. We believe that the developed CL framework can be expanded and used for EHR ML work in general.


Asunto(s)
COVID-19 , Infecciones por Coronavirus , Extravasación de Materiales Terapéuticos y Diagnósticos
4.
medrxiv; 2020.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2020.08.11.20172809

RESUMEN

Machine learning (ML) models require large datasets which may be siloed across different healthcare institutions. Using federated learning, a ML technique that avoids locally aggregating raw clinical data across multiple institutions, we predict mortality within seven days in hospitalized COVID-19 patients. Patient data was collected from Electronic Health Records (EHRs) from five hospitals within the Mount Sinai Health System (MSHS). Logistic Regression with L1 regularization (LASSO) and Multilayer Perceptron (MLP) models were trained using local data at each site, a pooled model with combined data from all five sites, and a federated model that only shared parameters with a central aggregator. Both the federated LASSO and federated MLP models performed better than their local model counterparts at four hospitals. The federated MLP model also outperformed the federated LASSO model at all hospitals. Federated learning shows promise in COVID-19 EHR data to develop robust predictive models without compromising patient privacy.


Asunto(s)
COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA